What鈥檚 new with DNA and RNA?
Eukaryotic gene expression is regulated at multiple layers. This session will cover emerging new mechanisms of gene expression regulation, centered around DNA and RNA. We will hear updates on regulation at the nucleosome structure and chromatin conformation level, how noncoding RNAs could impact transcription, and RNA modifications in post-transcriptional gene expression regulation. This session also will introduce diverse modern imaging technologies to visualize transcription activity and spatial transcriptome.
Keywords: chromatin structure, noncoding RNA, RNA modifications, super-resolution imaging, spatial transcriptome
Who should attend: students, postdocs and anyone interested in gene expression regulation, nucleosome structure and chromatin conformation, noncoding RNA and RNA modifications, super-resolution imaging and spatial transcriptome
Theme song: "The DNA Song" by Jam Campus (parody of "Trap Queen" by Fetty Wap)
This session is powered by nucleic acids.
Talks
- Cracking the nucleus: Finding order in chaos — Clodagh O'Shea, Salk Institute
- EM structures of nucleosomes with chaperones — Karolin Luger, University of Colorado Boulder
- Structural mechanism of human telomerase holoenzyme — Kelly Nguyen, Medical Research Council Laboratory of 麻豆传媒色情片 Biology
- Studying DNA-related processes on DNA curtains — Ilya Finkelstein, University of Texas at Austin
- m6A in the action of regulating the regulators — Kathy (Fange) Liu, University of Pennsylvania
- Jeannie Lee, Massachusetts General Hospital
- RNA methylation multitasking on chromatin — Blerta Xhemalce, University of Texas at Austin
- RNA methylation in gene expression regulation — Chuan He, University of Pennsylvania
- Visualizing RNA in life cells — Timothy Stasevich, Colorado State University
- Visualizing the dynamic genome during development, Alistair Boettiger, Stanford University
- 3D in situ RNA sequencing — Xiao Wang, Broad Institute and Massachusetts Institute of Technology
- Engineering the repetitive 3D genome in human disease— Jennifer Phillips–Cremins, University of Pennsylvania
Learn more
Check out all ten thematic symposia planned for the 2022 ASBMB annual meeting:
- Diversity, equity and inclusion
- Protein machines and disorder
- Signaling
- Quality control in organelles
- Metabolism
- Enzymology
- RNA/DNA
- Membranes/lipids
- Glycobiology
- Education and professional development
Enjoy reading ASBMB Today?
Become a member to receive the print edition four times a year and the digital edition monthly.
Learn moreFeatured jobs
from the
Get the latest from ASBMB Today
Enter your email address, and we鈥檒l send you a weekly email with recent articles, interviews and more.
Latest in Science
Science highlights or most popular articles

How scientists identified a new neuromuscular disease
NIH researchers discover Morimoto鈥揜yu鈥揗alicdan syndrome, after finding shared symptoms and RFC4 gene variants in nine patients, offering hope for faster diagnosis and future treatments.

Unraveling cancer鈥檚 spaghetti proteins
MOSAIC scholar Katie Dunleavy investigates how Aurora kinase A shields oncogene c-MYC from degradation, using cutting-edge techniques to uncover new strategies targeting 鈥渦ndruggable鈥 molecules.

How HCMV hijacks host cells 鈥 and beyond
Ileana Cristea, an ASBMB Breakthroughs webinar speaker, presented her research on how viruses reprogram cell structure and metabolism to enhance infection and how these mechanisms might link viral infections to cancer and other diseases.

Understanding the lipid link to gene expression in the nucleus
Ray Blind, an ASBMB Breakthroughs speaker, presented his research on how lipids and sugars in the cell nucleus are involved in signaling and gene expression and how these pathways could be targeted to identify therapeutics for diseases like cancer.

Receptor antagonist reduces age-related bone loss in mice
Receptor antagonist reduces bone loss and promotes osteoblast activity in aging mice, highlighting its potential to treat osteoporosis. Read more about this recent JBC paper.

Engineered fusion protein targets kiwifruit pathogen
Synthetic protein selectively kills kiwifruit pathogen, offering a promising biocontrol strategy for agriculture. Read more about this recent JBC paper.