Âé¶¹´«Ã½É«Ç鯬

Annual Meeting

New kids on the signaling block

A 2022 annual meeting session on signaling
Patrick Eyers Anne-Claude Gingras
By Patrick Eyers and Anne-Claude Gingras
Sept. 27, 2021

Signal relay in eukaryotes enables proper response to chemical or physical signals received by the cell. We now understand how many of the canonical components of signaling pathways exert their functions, including the mode of activation of many kinases and the relationships among receptors, scaffolds and downstream effectors. This understanding has been key to the development of therapeutics targeting signaling components. Yet, from receptors to enzymes such as kinases, phosphatases, ubiquitin ligases and deubiquitinases, the signaling machinery still holds many mysteries. 

In this session, we will focus on atypical signaling mechanisms, from the discovery of new catalysis within the kinome superfamily and noncanonical ubiquitination to the role of metals such as copper in signaling. We also discuss the emergence of pseudoenzymes: These allosteric signaling scaffolds are defined by their structural and sequence homology to canonical enzymes such as kinases and phosphatases, but they lack catalytic activity and remain relatively unexplored biologically and as potential drug targets. 

We also will discuss how improvements in phosphoproteomics, genetic screens, and affinity and proximity proteomics permit us to globally assess specific aspects of signal transduction and shine new lights on poorly characterized enzymes, scaffolds and substrates.

Keywords: signal transduction, phosphorylation, ubiquitination, post-translational modification, pseudoenzymes, mass spectrometry, CRISPR screens, structural biology, interaction mapping 

Who should attend: everyone who likes taking the road less traveled and those interested in good detective stories 

Theme song: “Halo” by Beyoncé 

This session is powered by ligands and receptors.

Talks

  • CRISPR sensors for signaling — Stéphane Angers, University of Toronto
  • Tracing copper utilization by kinase signal transduction pathways: Implications for cancer cell processes — Donita Brady, University of Pennsylvania
  • How do signaling pseudoenzymes work? — Patrick Eyers, University of Liverpool
  • Proximity-dependent sensors for signaling — Anne-Claude Gingras, Mount Sinai Hospital
  • Proteome-scale amino-acid resolution footprinting of protein-binding sites in the intrinsically disordered regions — Ylva Ivarsson, Uppsala University
  • Structural basis for signaling by the HER3 pseudokinase — Natalia Jura, University of California, San Francisco
  • Defining pseudoenzymes in glycosylation pathways — Natarajan Kannan, University of Georgia
  • Cell signaling by protein tyrosine phosphatases — Hayley Sharpe, Babraham Institute, Cambridge
  • Expanding the kinome — Vinnie Tagliabracci, University of Texas Southwestern Medical Center
  • Pseudoenzyme classification — Janet Thornton, European Âé¶¹´«Ã½É«Ç鯬 Biology Laboratory
  • A high-dimensional map of phosphorylation-dependent signaling in budding yeast — Judit Villén, University of Washington
  • Noncanonical ubiquitination — Satpal Virdee, University of Dundee

Learn more

Check out all ten thematic symposia planned for the 2022 ASBMB annual meeting:

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition monthly.

Learn more
Patrick Eyers
Patrick Eyers

Patrick Eyers is a professor of cell signaling and head of the biochemistry and systems biology department at the University of Liverpool. His interests include all aspects of protein phosphorylation and sulfation.
 

Anne-Claude Gingras
Anne-Claude Gingras

Anne-Claude Gingras is an investigator at the Lunenfeld–Tanenbaum Research Institute of Mount Sinai Hospital in Toronto and a deputy editor of the journal Âé¶¹´«Ã½É«Ç鯬 & Cellular Proteomics.

Featured jobs

from the

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

ApoA1 reduce atherosclerotic plaques via cell death pathway
Journal News

ApoA1 reduce atherosclerotic plaques via cell death pathway

Oct. 1, 2025

Researchers show that ApoA1, a key HDL protein, helps reduce plaque and necrotic core formation in atherosclerosis by modulating Bim-driven macrophage death. The findings reveal new insights into how ApoA1 protects against heart disease.

Omega-3 lowers inflammation, blood pressure in obese adults
Journal News

Omega-3 lowers inflammation, blood pressure in obese adults

Oct. 1, 2025

A randomized study shows omega-3 supplements reduce proinflammatory chemokines and lower blood pressure in obese adults, furthering the understanding of how to modulate cardiovascular disease risk.

AI unlocks the hidden grammar of gene regulation
Feature

AI unlocks the hidden grammar of gene regulation

Sept. 30, 2025

Using fruit flies and artificial intelligence, Julia Zeitlinger’s lab is decoding genome patterns — revealing how transcription factors and nucleosomes control gene expression, pushing biology toward faster, more precise discoveries.

Zebrafish model links low omega-3s to eye abnormalities
Journal News

Zebrafish model links low omega-3s to eye abnormalities

Sept. 24, 2025

Researchers at the University of Colorado Anschutz developed a zebrafish model to show that low maternal docosahexaenoic acid can disrupt embryo eye development and immune gene expression, offering a tool to study nutrition in neurodevelopment.

Top reviewers at ASBMB journals
Observance

Top reviewers at ASBMB journals

Sept. 19, 2025

Editors recognize the heavy-lifters and rising stars during Peer Review Week.

Teaching AI to listen
Essay

Teaching AI to listen

Sept. 18, 2025

A computational medicine graduate student reflects on building natural language processing tools that extract meaning from messy clinical notes — transforming how we identify genetic risk while redefining what it means to listen in science.