New kids on the signaling block
Signal relay in eukaryotes enables proper response to chemical or physical signals received by the cell. We now understand how many of the canonical components of signaling pathways exert their functions, including the mode of activation of many kinases and the relationships among receptors, scaffolds and downstream effectors. This understanding has been key to the development of therapeutics targeting signaling components. Yet, from receptors to enzymes such as kinases, phosphatases, ubiquitin ligases and deubiquitinases, the signaling machinery still holds many mysteries.
In this session, we will focus on atypical signaling mechanisms, from the discovery of new catalysis within the kinome superfamily and noncanonical ubiquitination to the role of metals such as copper in signaling. We also discuss the emergence of pseudoenzymes: These allosteric signaling scaffolds are defined by their structural and sequence homology to canonical enzymes such as kinases and phosphatases, but they lack catalytic activity and remain relatively unexplored biologically and as potential drug targets.
We also will discuss how improvements in phosphoproteomics, genetic screens, and affinity and proximity proteomics permit us to globally assess specific aspects of signal transduction and shine new lights on poorly characterized enzymes, scaffolds and substrates.
Keywords: signal transduction, phosphorylation, ubiquitination, post-translational modification, pseudoenzymes, mass spectrometry, CRISPR screens, structural biology, interaction mapping
Who should attend: everyone who likes taking the road less traveled and those interested in good detective stories
Theme song: “Halo” by Beyonc茅
This session is powered by ligands and receptors.
Talks
- CRISPR sensors for signaling — St茅phane Angers, University of Toronto
- Tracing copper utilization by kinase signal transduction pathways: Implications for cancer cell processes — Donita Brady, University of Pennsylvania
- How do signaling pseudoenzymes work? — Patrick Eyers, University of Liverpool
- Proximity-dependent sensors for signaling — Anne-Claude Gingras, Mount Sinai Hospital
- Proteome-scale amino-acid resolution footprinting of protein-binding sites in the intrinsically disordered regions — Ylva Ivarsson, Uppsala University
- Structural basis for signaling by the HER3 pseudokinase — Natalia Jura, University of California, San Francisco
- Defining pseudoenzymes in glycosylation pathways — Natarajan Kannan, University of Georgia
- Cell signaling by protein tyrosine phosphatases — Hayley Sharpe, Babraham Institute, Cambridge
- Expanding the kinome — Vinnie Tagliabracci, University of Texas Southwestern Medical Center
- Pseudoenzyme classification — Janet Thornton, European 麻豆传媒色情片 Biology Laboratory
- A high-dimensional map of phosphorylation-dependent signaling in budding yeast — Judit Vill茅n, University of Washington
- Noncanonical ubiquitination — Satpal Virdee, University of Dundee
Learn more
Check out all ten thematic symposia planned for the 2022 ASBMB annual meeting:
Enjoy reading ASBMB Today?
Become a member to receive the print edition four times a year and the digital edition monthly.
Learn moreFeatured jobs
from the
Get the latest from ASBMB Today
Enter your email address, and we鈥檒l send you a weekly email with recent articles, interviews and more.
Latest in Science
Science highlights or most popular articles

How scientists identified a new neuromuscular disease
NIH researchers discover Morimoto鈥揜yu鈥揗alicdan syndrome, after finding shared symptoms and RFC4 gene variants in nine patients, offering hope for faster diagnosis and future treatments.

Unraveling cancer鈥檚 spaghetti proteins
MOSAIC scholar Katie Dunleavy investigates how Aurora kinase A shields oncogene c-MYC from degradation, using cutting-edge techniques to uncover new strategies targeting 鈥渦ndruggable鈥 molecules.

How HCMV hijacks host cells 鈥 and beyond
Ileana Cristea, an ASBMB Breakthroughs webinar speaker, presented her research on how viruses reprogram cell structure and metabolism to enhance infection and how these mechanisms might link viral infections to cancer and other diseases.

Understanding the lipid link to gene expression in the nucleus
Ray Blind, an ASBMB Breakthroughs speaker, presented his research on how lipids and sugars in the cell nucleus are involved in signaling and gene expression and how these pathways could be targeted to identify therapeutics for diseases like cancer.

Receptor antagonist reduces age-related bone loss in mice
Receptor antagonist reduces bone loss and promotes osteoblast activity in aging mice, highlighting its potential to treat osteoporosis. Read more about this recent JBC paper.

Engineered fusion protein targets kiwifruit pathogen
Synthetic protein selectively kills kiwifruit pathogen, offering a promising biocontrol strategy for agriculture. Read more about this recent JBC paper.