Âé¶ą´«Ă˝É«ÇéƬ

Journal News

From the journals: JLR

Swarnali  Roy
Dec. 29, 2023

What gene stresses endothelial cells? Are smaller fat cells better for your health? Read about how researchers are addressing these questions in the Journal of Lipid Research.

 

What gene stresses endothelial cells?

Cholesterol homeostasis helps regulate cellular functions in mammals and plays a role in the human body’s structure and metabolism. Understanding cholesterol biosynthesis is important in the context of its imperative role in maintaining a healthy lifestyle. Cholesterol biosynthesis determines cholesterol homeostasis and multiple regulatory mechanisms are in charge of controlling this process. Sterol regulatory element-binding protein 2, or SREBP2, is the prime transcriptional regulator of this complex process.

Cholesterol homeostasis and cellular immunity have a close relationship, regulated by SREBP, which researchers have not thoroughly explored in endothelial cells, or ECs. In diseases such as atherosclerosis, levels of SREBP2 and cholesterol in EC increase, making it more important to study their role in the inflammatory process.

In a published in the Journal of Lipid Research, Joseph Wayne and researchers from the Yale University School of Medicine and the University of Arizona describe how SREBP2 significantly contributes to the overall EC inflammatory response. They also provide the first report of endogenous SREBP2 chromatin immunoprecipitation sequencing, or ChIP-seq, performed in human cells under inflammatory stress.

These researchers showed that loss of SREBP2 inhibits chemokines such as IL6, CXCL1 and CXCL8, which are important for recruitment and activation of leukocytes to the site of injury detected by ECs. SREBP2 knockdown did not affect other classical nuclear factor kappa-light-chain-enhancer of activated B, or NF-kB, genes. This implies that SREBP2 controls a distinct pathway of the EC inflammatory phenotype. They treated the ECs with tumor necrosis factor alpha and performed ChIP-seq, which enabled them to identify two gene targets: class E basic helix- loop-helix protein 40, or BHLHE40, and Krueppel-like factor 6, or KLF6. These two genes are novel targets of SREBP2 binding, and loss of SREBP2 significantly weakened the expression of both. Of the two, KLF6 knockdown more significantly inhibited specific chemokine expression in ECs.

The authors are interested in exploring the role of SREBP2 in diseases such as atherosclerosis by studying the close connection between cholesterol homeostasis and inflammatory phenotypes in ECs.

 

Are smaller fat cells better for your health?

Obesity and obesity-related chronic diseases are major public health concerns. According to the Centers for Disease Control and Prevention, about 42% of adults and 20% of children in the U.S. are obese. Dysfunctional adipose tissue is a hallmark of obesity. The expansion of adipose tissue can be driven either by the increased size of existing adipocytes (hypertrophy) or by the formation of new adipocytes, or adipogenesis, through the differentiation of precursor cells (hyperplasia). Studies have shown that small adipocytes can impede obesity-associated metabolic disorders. Hyperplasia attempts to reduce adipose tissue remodeling, such as macrophage infiltration and chronic inflammation, caused by obesity-associated hypertrophy. Thus, researchers are becoming more interested in studying adipogenesis for the benefit of metabolic health.

The alpha/beta–hydrolase domain, or ABHD, enzymes, a family of endocannabinoid-degrading enzymes, are important regulators of lipid metabolism and signal transduction. In a published in the Journal of Lipid Research, Mary E. Seramur and a team at Wake Forest University explored the function of ABHD4, a lysophospholipase/phospholipase B enzyme in adipose tissue lipid biology. They used a novel Abhd4 knockout, or KO, pre-adipocyte cell model as well as adipocyte-specific and whole-body Abhd4 KO mice for their study.

Throughout nine days of adipocyte differentiation, the researchers observed increased adipogenesis and lipid accumulation in cells lacking ABHD4 by measuring the triacylglycerol, or TAG, mass, lipid droplets that are stored in cellular lipid droplets. They saw no difference in body weight, fat composition and metabolic outcome such as glucose tolerance in adipocyte-specific and whole-body Abhd4 KO mice. They also did not find any difference in bioactive lipids such as oleoylethanolamide that are responsible for lipolysis, a process that breaks down TAG in both kinds of mice.

The researchers are interested in studying the effect of ABHD4 and specific protein kinase interaction in regulating adipogenesis.

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition monthly.

Learn more
Swarnali  Roy

Swarnali Roy is a postdoctoral researcher in the Laboratory of Bioorganic Chemistry at the National Institute of Diabetes and Digestive and Kidney Diseases. She is an ASBMB Today volunteer contributor.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

How scientists identified a new neuromuscular disease
Feature

How scientists identified a new neuromuscular disease

Aug. 14, 2025

NIH researchers discover Morimoto–Ryu–Malicdan syndrome, after finding shared symptoms and RFC4 gene variants in nine patients, offering hope for faster diagnosis and future treatments.

Unraveling cancer’s spaghetti proteins
Profile

Unraveling cancer’s spaghetti proteins

Aug. 13, 2025

MOSAIC scholar Katie Dunleavy investigates how Aurora kinase A shields oncogene c-MYC from degradation, using cutting-edge techniques to uncover new strategies targeting “undruggable” molecules.

How HCMV hijacks host cells — and beyond
Profile

How HCMV hijacks host cells — and beyond

Aug. 12, 2025

Ileana Cristea, an ASBMB Breakthroughs webinar speaker, presented her research on how viruses reprogram cell structure and metabolism to enhance infection and how these mechanisms might link viral infections to cancer and other diseases.

Understanding the lipid link to gene expression in the nucleus
Profile

Understanding the lipid link to gene expression in the nucleus

Aug. 11, 2025

Ray Blind, an ASBMB Breakthroughs speaker, presented his research on how lipids and sugars in the cell nucleus are involved in signaling and gene expression and how these pathways could be targeted to identify therapeutics for diseases like cancer.

Receptor antagonist reduces age-related bone loss in mice
Journal News

Receptor antagonist reduces age-related bone loss in mice

Aug. 6, 2025

Receptor antagonist reduces bone loss and promotes osteoblast activity in aging mice, highlighting its potential to treat osteoporosis. Read more about this recent JBC paper.

Engineered fusion protein targets kiwifruit pathogen
Journal News

Engineered fusion protein targets kiwifruit pathogen

Aug. 6, 2025

Synthetic protein selectively kills kiwifruit pathogen, offering a promising biocontrol strategy for agriculture. Read more about this recent JBC paper.