Unraveling cancer’s spaghetti proteins
“I call them spaghetti noodles,” because they lack structure and are highly flexible, Katie Dunleavy said of intrinsically disorder proteins, or IDPs, her chosen field of study. She studied IDPs in more depth during her Ph.D. at the University of Florida, focusing on their conformational dynamics and hydration properties using a yeast protein as a model system.

Now a postdoctoral fellow at the University of Minnesota and former 鶹ýɫƬ and 鶹ýɫƬ Biology Maximizing Opportunities for Scientific and Academic Independent Careers, or MOSAIC, scholar, Dunleavy is studying how the IDP transcription factor c-MYC interacts with Aurora kinase A, or AURKA. c-MYC is expressed in over 70% of human cancers, making its interactions a vital focus for potential cancer therapies. Meanwhile, AURKA is a binding partner that may stabilize c-MYC.
Although AURKA’s role in stabilizing c-MYC is known, the precise structure and mechanism behind this stabilization remain unclear. This lack of understanding makes it difficult to design inhibitors that could disrupt the interaction and restore the normal protein turnover. Through a process called ubiquitination, the small protein ubiquitin tags other proteins, such as c-MYC, for degradation. To investigate how AURKA alters c-MYC’s ubiquitination process, Dunleavy is employing advanced biophysical techniques.
To investigate how AURKA affects the degradation of c-MYC, Dunleavy uses several biophysical techniques. For example, she uses continuous-wave electron paramagnetic resonance, or CW–EPR, to track protein movement in real time. She also applies X-ray crystallography and cryo-electron microscopy (cryo-EM) to map the structure of the c-MYC–AURKA complex and examine how their interaction may prevent c-MYC from being broken down. Ubiquitination assays further allow her to study how c-MYC is modified in the presence of AURKA. Together, these methods help her explore the mechanisms by which AURKA stabilizes c-MYC and interferes with its degradation.
“The hypothesis is that (when AURKA binds to c-MYC), the bound complex can’t be properly ubiquitinated nor sent for proper degradation of the protein,” Dunleavy said.
While researchers have known that AURKA binds to and stabilizes c-MYC, the full implications of that interaction are still coming into focus. “In a broader sense, this means the mechanism of stabilization of c-MYC by AURKA in cancerous conditions in general is not known,” she said.
Dunleavy is especially intrigued by what sets this project apart from more conventional studies of kinases. “What I find so cool about this story is that it is not a traditional kinase story,” she said. AURKA doesn’t modify c-MYC — it binds to c-Myc and protects it from degradation.
Because c-MYC is an intrinsically disordered protein, or IDP, it lacks well-defined binding pockets, making it a challenging drug target. Dunleavy plans to launch her independent research focused on defining the structure of the MYC–AURKA complexes and how ubiquitination alters their interaction. Her work could help build a structural and mechanistic roadmap — and inform strategies for disrupting this interaction. Once considered “undruggable,” IDPs like c-MYC may now be viable targets for cancer therapies. Receiving the MOSAIC award inspired Dunleavy, a first-generation college graduate, to give back.
“I was drawn to the MOSAIC program since I have a passion for mentorship and helping the underrepresented, including students who come from similar situations (as me) that don’t have a background (in science) or
don’t know that research exists,” Dunleavy said. “It has empowered me to grow my ambitions. I want to help inspire others through mentorship to be an available outlet for those pursuing this career.”
Enjoy reading ASBMB Today?
Become a member to receive the print edition four times a year and the digital edition monthly.
Learn moreGet the latest from ASBMB Today
Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.
Latest in People
People highlights or most popular articles

How HCMV hijacks host cells — and beyond
Ileana Cristea, an ASBMB Breakthroughs webinar speaker, presented her research on how viruses reprogram cell structure and metabolism to enhance infection and how these mechanisms might link viral infections to cancer and other diseases.

Understanding the lipid link to gene expression in the nucleus
Ray Blind, an ASBMB Breakthroughs speaker, presented his research on how lipids and sugars in the cell nucleus are involved in signaling and gene expression and how these pathways could be targeted to identify therapeutics for diseases like cancer.

In memoriam: William S. Sly
He served on the 鶹ýɫƬ and 鶹ýɫƬ Biology Council in 2005 and 2006 and was an ASBMB member for 35 years.

ASBMB committees welcome new members
Members joined these committees: Education and Professional Development, Maximizing Access, Meetings, 鶹ýɫƬ, Public Affairs Advisory, Science Outreach and Communication, Student Chapters and Women in Biochemistry and 鶹ýɫƬ Biology.

Cadichon honored for academic achievement
She won the State University of New York at Old Westbury’s Dr. Henry Teoh Award for Outstanding Collegiate Science and Technology Entry Program Graduating Senior, which recognizes exceptional achievement, leadership and promise in a student.

In memoriam: Ralph G. Yount
He was a professor emeritus of chemistry and biochemistry at Washington State University and an ASBMB member for 58 years.