Âé¶ą´«Ă˝É«ÇéƬ

Journal News

Re-creating coagulation in a lab

A positive step for the horseshoe crab
Kian Kamgar-Parsi
Sept. 15, 2020

When considering modern medicine’s fight against infections, a horseshoe crab is likely not the first thing that comes to mind. However, the of these ancient arthropods is cause for concern in the biomedical industry.

Kaldari/Wikimedia Commons
The horseshoe crab has been around for 450 million years and is more closely related to spiders than other crabs. Use of horseshoe crabs’ blue blood (called hemolymph) for medical tests threatens a species already pressured by environmental change and human development.

Bacterial lipopolysaccharide, or LPS, is a toxic molecule that can cause life-threatening infectious reactions in humans. Horseshoe crab hemolymph (a blood equivalent) is extremely sensitive to LPS, coagulating in response to even trace amounts. Due to this property, hemolymph is used in the Limulus test, a critical tool to ensure medical devices and drugs are free of LPS contamination. Unfortunately, the harvesting of hemolymph pits medical and conservation interests against each other.

, a researcher at Kyushu University in Japan, seeks a solution to this conflict. “(The) raw materials of Limulus test are totally dependent on the limited natural resource,” he said. “As an alternative approach, we have been doing studies to develop a next-generation Limulus test using recombinant (engineered) proteins.”

 Kawabata and his colleagues published in the Journal of Biological Chemistry represents an important step toward a hemolymph-free Limulus test.

In their study, Kawabata’s team focused on the main catalytic pathway of hemolymph coagulation: three zymogens (inactive enzyme precursors) called proC, proB and proCE. In the presence of LPS, proC is activated into an enzyme called alpha-chelicerase C that converts proB into chelicerase B; chelicerase B in turn activates proCE into the clotting enzyme that coagulates the hemolymph. Kawabata functional proC and proB; in this new research, his lab also made a functional proCE without the use of hemolymph for the first time.

“We have overcome several difficulties in preparing these recombinant proteins, and now we have (all) three recombinants: proC, proB, and proCE,” Kawabata said. Using these three proteins to reconstitute the coagulation cascade, the team discovered that specific regions and amino acids in proB and proCE are key for activation. Now they are using their set of recombinant zymogens and these recent data to improve on nature’s designs.

“We are pushing this work forward to prepare more effective and stable recombinants of the protease zymogens applicable for the detection of LPS,” Kawabata said.

Challenges remain before a fully synthetic hemolymph substitute can be used for the Limulus test. While the proteins developed by the team represent the core components, three proteins alone cannot mimic hemolymph perfectly. “Some cofactors, environmental proteins or some preservatives must be indispensable,” Kawabata said.

It is also important to ensure that the cascade cannot be triggered by other environmental substances, something that will require further testing and optimization.

Although questions remain, Kawabata and his team already are working with companies in Japan “to make a more sensitive and convenient test … and ensure a continuous supply of the best materials,” he said.

In time, the proteins developed in the Kawabata lab could bring medical and conservation concerns into harmony, protecting the horseshoe crab population while providing a powerful tool to prevent infections.

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition monthly.

Learn more
Kian Kamgar-Parsi

Kian Kamgar-Parsi received a Ph.D. in biophysics from the University of Michigan and works as a consultant for the pharmaceutical industry.
 

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

How scientists identified a new neuromuscular disease
Feature

How scientists identified a new neuromuscular disease

Aug. 14, 2025

NIH researchers discover Morimoto–Ryu–Malicdan syndrome, after finding shared symptoms and RFC4 gene variants in nine patients, offering hope for faster diagnosis and future treatments.

Unraveling cancer’s spaghetti proteins
Profile

Unraveling cancer’s spaghetti proteins

Aug. 13, 2025

MOSAIC scholar Katie Dunleavy investigates how Aurora kinase A shields oncogene c-MYC from degradation, using cutting-edge techniques to uncover new strategies targeting “undruggable” molecules.

How HCMV hijacks host cells — and beyond
Profile

How HCMV hijacks host cells — and beyond

Aug. 12, 2025

Ileana Cristea, an ASBMB Breakthroughs webinar speaker, presented her research on how viruses reprogram cell structure and metabolism to enhance infection and how these mechanisms might link viral infections to cancer and other diseases.

Understanding the lipid link to gene expression in the nucleus
Profile

Understanding the lipid link to gene expression in the nucleus

Aug. 11, 2025

Ray Blind, an ASBMB Breakthroughs speaker, presented his research on how lipids and sugars in the cell nucleus are involved in signaling and gene expression and how these pathways could be targeted to identify therapeutics for diseases like cancer.

Receptor antagonist reduces age-related bone loss in mice
Journal News

Receptor antagonist reduces age-related bone loss in mice

Aug. 6, 2025

Receptor antagonist reduces bone loss and promotes osteoblast activity in aging mice, highlighting its potential to treat osteoporosis. Read more about this recent JBC paper.

Engineered fusion protein targets kiwifruit pathogen
Journal News

Engineered fusion protein targets kiwifruit pathogen

Aug. 6, 2025

Synthetic protein selectively kills kiwifruit pathogen, offering a promising biocontrol strategy for agriculture. Read more about this recent JBC paper.