Âé¶ą´«Ă˝É«ÇéƬ

Annual Meeting

Using bacteria to clean the environment

Núria  Negrão
April 28, 2021

In recent years, concerns have heightened about increasing amounts of , particularly in . While the impact of this environmental pollution is not well understood, some evidence indicates that these drugs may be entering the food chain. Researchers  believe that first accumulate at wastewater treatment facilities. Therefore, there is a need to eliminate the drugs at these facilities.

Ashley Robinson, a senior biochemistry major at Hamline University who plans to start graduate school in the fall, started doing research in her sophomore year. She is presenting a poster at the 2021 ASBMB Annual Meeting on this topic, the third research project she has worked on with .

Kathryn Malody
Ashley Robinson works in the biological safety hood at the MartĂ­nez–Vaz lab.

The researchers’ goal was to find bacteria that break down metformin, a drug commonly used to treat diabetes in the U.S. and around the world. Little research has been done on the impact of pollution with metformin and its byproduct, guanylurea, which are not fully metabolized by humans and thus are excreted into wastewater systems. “We consider them to be emerging pollutants,” Robinson said.

Ashley Robinson & James Aukema
This graphic represents the topics of Robinson’s research. With increasing prescription of the Type 2 diabetes drug metformin (top), both metformin and its predominant metabolite, guanylurea (bottom), are water pollutants of emerging concern worldwide. The researchers recently isolated a strain of Pseudomonas that can completely degrade guanylurea from a wastewater treatment facility (middle). They identified and characterized a guanylurea-degrading enzyme, guanylurea hydrolase.

Studies have demonstrated the potential for metformin to disrupt some hormones, she explained. The drug  is considered an endocrine disruption agent in some small fishes, and guanylurea has been shown to interfere with the nitrogen cycle in soil. Little is known about its bioaccumulation potential.

“Can these molecules pass up the food chain?” Robinson said. “That is one concern that we have.”

The research team collected samples at a local wastewater treatment facility from several stages of the treatment process. The bacteria in the samples were then grown in the lab under limiting conditions, meaning the bacteria were not given all the nutrients they needed. In this case, their only source of nitrogen was metformin, so most of the bacteria that survived were species that could use metformin as a nitrogen source. The team then used metagenomics to identify the enzymes involved in the breakdown of guanylurea and its transformation product guanidine. They identified three enzymes: guanylurea hydrolase, carboxyguanidine deiminase and allophanate hydrolase.

Robinson and her colleagues are now working to identify the enzyme that breaks down metformin in the initial step that forms guanylurea. They hope the enzymes they find could be used to break down metformin and guanylurea at wastewater treatment facilities, keeping these pollutants out of freshwater systems.


Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition monthly.

Learn more
Núria  Negrão

NĂşria NegrĂŁo is a medical writer and editor at Cactus Communications.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

How scientists identified a new neuromuscular disease
Feature

How scientists identified a new neuromuscular disease

Aug. 14, 2025

NIH researchers discover Morimoto–Ryu–Malicdan syndrome, after finding shared symptoms and RFC4 gene variants in nine patients, offering hope for faster diagnosis and future treatments.

Unraveling cancer’s spaghetti proteins
Profile

Unraveling cancer’s spaghetti proteins

Aug. 13, 2025

MOSAIC scholar Katie Dunleavy investigates how Aurora kinase A shields oncogene c-MYC from degradation, using cutting-edge techniques to uncover new strategies targeting “undruggable” molecules.

How HCMV hijacks host cells — and beyond
Profile

How HCMV hijacks host cells — and beyond

Aug. 12, 2025

Ileana Cristea, an ASBMB Breakthroughs webinar speaker, presented her research on how viruses reprogram cell structure and metabolism to enhance infection and how these mechanisms might link viral infections to cancer and other diseases.

Understanding the lipid link to gene expression in the nucleus
Profile

Understanding the lipid link to gene expression in the nucleus

Aug. 11, 2025

Ray Blind, an ASBMB Breakthroughs speaker, presented his research on how lipids and sugars in the cell nucleus are involved in signaling and gene expression and how these pathways could be targeted to identify therapeutics for diseases like cancer.

Receptor antagonist reduces age-related bone loss in mice
Journal News

Receptor antagonist reduces age-related bone loss in mice

Aug. 6, 2025

Receptor antagonist reduces bone loss and promotes osteoblast activity in aging mice, highlighting its potential to treat osteoporosis. Read more about this recent JBC paper.

Engineered fusion protein targets kiwifruit pathogen
Journal News

Engineered fusion protein targets kiwifruit pathogen

Aug. 6, 2025

Synthetic protein selectively kills kiwifruit pathogen, offering a promising biocontrol strategy for agriculture. Read more about this recent JBC paper.