麻豆传媒色情片

Award

Varghese roams from forests
to enzymes

Meet a JBC/Tabor award winner

When Febin Varghese is not puzzling out enzyme structures in the lab, there’s a good chance he’s out on the trail.

The 2020 JBC Herbert Tabor Early Career Investigator Award winners will present their work at the 2021 ASBMB Annual Meeting, 1:45–3 p.m., Tuesday, April 27.

Find out about registering for the annual meeting here.

“When I was really young, I used to watch a lot of documentaries on National Geographic and Discovery Science and such,” Varghese said. “We would watch as a family, and I think that’s where it all started.”

Febin Varghese

This early interest in the natural world sparked Varghese’s lifelong study of biology both out in the forest and deep inside molecular structures. “I love being in the lab, but I try my best to take breaks,” he said. “Something about being in the mountain air, up in the clouds, stepping away to clear your head, is really refreshing.”

After earning a doctorate at Cambridge University, Varghese embarked on a 15-month backpacking journey throughout Southeast Asia, Australia and New Zealand.

He then returned to the world of metalloenzymes as a postdoc at the Imperial College of London, where researchers in his lab peered into the mystery of how associated proteins protect nitrogen fixation in the presence of oxygen. The project combined Varghese’s interest in energy-conserving metalloenzymes with the potential for long-term environmental applications — an excellent fit. For his contribution to the study as first author on published in the Journal of Biological Chemistry, Varghese won a 2020 Journal of Biological Chemistry/Herbert Tabor Early Career Investigator Award.

“I was very surprised, I wasn’t expecting it at all,” he said of the award. “It’s an honor to be recognized, but a lot of people’s work went into this paper. Collaboration is everything in science.”

Protecting nitrogenase

Nitrogen is abundant in the atmosphere yet scarce in the biosphere; only prokaryotes are equipped with the enzymes necessary to fix atmospheric nitrogen into bioavailable forms. To subvert this limitation and boost crop production, researchers are studying nitrogen-fixing enzymes with the goal of genetically engineering crop plants that can express nitrogenase of their own.

Iron-only nitrogenase, encoded by fewer genes than other nitrogen-fixing enzymes, is a promising candidate for this endeavor. However, it becomes inactive in the presence of oxygen; this barrier must be overcome for it to be expressed functionally in crops.

To explore how the structure of iron-only nitrogenase responds to oxygen, Varghese and colleagues at the James W. Murray lab at the department of life sciences at the Imperial College of London investigated the structure and oxygen-reducing role of Anf3, a protein associated with nitrogenase function.

By characterizing the crystal structure of Anf3 at atomic resolution, the team saw that its heme and flavin adenine dinucleotide cofactors were unexpectedly close to each other.

“The structure itself was a surprise,” Varghese said. “We knew (Anf3) had a heme and an FAD cofactor, but that they were so close together and that there was a cooperative effect was unexpected.”

Further experiments suggested that electron transfer between the two cofactors contributes to Anf3’s ability to reduce oxygen, thus protecting iron-only nitrogenase from being inactivated. Anf3 protein is a promising candidate for enhancing functional nitrogenase in aerobic environments.

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition monthly.

Learn more
Guananí Gómez鈥揤an Cortright

Guanan铆 G贸mez–Van Cortright is a teacher and freelance science writer.

Get the latest from ASBMB Today

Enter your email address, and we鈥檒l send you a weekly email with recent articles, interviews and more.

Latest in People

People highlights or most popular articles

Meet the 2025 SOC grant awardees
Outreach

Meet the 2025 SOC grant awardees

Aug. 15, 2025

Five science outreach and communication projects received up to $1,000 from ASBMB to promote the understanding of molecular life science.

Unraveling cancer鈥檚 spaghetti proteins
Profile

Unraveling cancer鈥檚 spaghetti proteins

Aug. 13, 2025

MOSAIC scholar Katie Dunleavy investigates how Aurora kinase A shields oncogene c-MYC from degradation, using cutting-edge techniques to uncover new strategies targeting 鈥渦ndruggable鈥 molecules.

How HCMV hijacks host cells 鈥 and beyond
Profile

How HCMV hijacks host cells 鈥 and beyond

Aug. 12, 2025

Ileana Cristea, an ASBMB Breakthroughs webinar speaker, presented her research on how viruses reprogram cell structure and metabolism to enhance infection and how these mechanisms might link viral infections to cancer and other diseases.

Understanding the lipid link to gene expression in the nucleus
Profile

Understanding the lipid link to gene expression in the nucleus

Aug. 11, 2025

Ray Blind, an ASBMB Breakthroughs speaker, presented his research on how lipids and sugars in the cell nucleus are involved in signaling and gene expression and how these pathways could be targeted to identify therapeutics for diseases like cancer.

In memoriam: William S. Sly
In Memoriam

In memoriam: William S. Sly

Aug. 11, 2025

He served on the 麻豆传媒色情片 and 麻豆传媒色情片 Biology Council in 2005 and 2006 and was an ASBMB member for 35 years.

ASBMB committees welcome new members
Society News

ASBMB committees welcome new members

Aug. 7, 2025

Members joined these committees: Education and Professional Development, Maximizing Access, Meetings, 麻豆传媒色情片, Public Affairs Advisory, Science Outreach and Communication, Student Chapters and Women in Biochemistry and 麻豆传媒色情片 Biology.