Âé¶ą´«Ă˝É«ÇéƬ

Journal News

Neurodegenerative disease linked to microtubules

Laura Elyse McCormick
Jan. 26, 2023

First characterized in Quebec in 1978, autosomal recessive spastic ataxia of Charlevoix–Saguenay, or ARSACS, is a hereditary neurodegenerative disease. Symptoms such as difficulty walking often appear in early childhood and continue to progress, limiting the mobility and lifespan of those affected.

In particular, ARSACS affects the cerebellum, the region of the brain that controls motor skills. It is the second most common recessive form of ataxia, or loss of muscle coordination and movement, in the world.

Purkinje neurons, shown in red here, are nerve cells in the cerebellum.
YINGUA MA & TIMOTHY VARTANIAN, CORNELL UNIVERSITY/NIH IMAGE GALLERY
Purkinje neurons, shown in red here, are nerve cells in the cerebellum.

No cure exists for ARSACS, but in 2000, a team at McGill University identified mutations in the protein sacsin as its cause. Developing therapeutics is a challenge, however, because researchers do not completely understand sacsin’s function. Although suggests sacsin may influence mitochondrial transport and function in neurons, its role in the cell is still unclear.

Vincent Francis, a postdoctoral fellow at McGill University, joined the laboratory of because he was interested in neurodegeneration. In particular, Francis wanted to work on the understudied sacsin.

“I decided to pursue the project to understand the cellular function of sacsin, which could provide potential new therapeutic strategies for the treatment of the disease,” Francis wrote to ASBMB Today.

Previous work in the lab had focused on mitochondria, so Francis began looking at the transport of other organelles. He focused on the lysosome, the recycling center of the cell, where unwanted materials can be broken down and reused. Generally, lysosomes are clustered neatly around the nucleus. However, in cells without sacsin, lysosomes were scattered all around.

Lysosomes and other organelles are transported on microtubules. In neurons without sacsin, lysosomes move less. Based on their observations, Francis and the team hypothesized that sacsin could regulate the trafficking of cargo on microtubules.  

“We assumed that sacsin could probably be functioning as an adaptor for organellar transport,” Francis wrote. “Instead, what surprised us was the ability of sacsin to bind to microtubules and to modulate microtubule dynamics.”

Microtubules are required for autolysomal reformation, a process in which new lysosomes are formed. Once again, without sacsin, cells showed a decrease in this process.

Because neurons are large, expansive cells, regulation of organelle trafficking is particularly important for their function.

This research, in the Journal of Biological Chemistry, suggests sacsin is a key regulator of cellular traffic. In the future, the team hopes these results will inform research that can help identify treatments for patients with ARSACS.

Francis noted that several other neurological disorders — including Alzheimer’s disease — are associated with decreases in neuronal microtubule stability. This indicates that microtubules may be a promising therapeutic target for ARSACS and other neurodegenerative diseases.

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition monthly.

Learn more
Laura Elyse McCormick

Laura McCormick is a graduate student in the Department of Cell Biology and Physiology at the University of North Carolina at Chapel Hill.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

How scientists identified a new neuromuscular disease
Feature

How scientists identified a new neuromuscular disease

Aug. 14, 2025

NIH researchers discover Morimoto–Ryu–Malicdan syndrome, after finding shared symptoms and RFC4 gene variants in nine patients, offering hope for faster diagnosis and future treatments.

Unraveling cancer’s spaghetti proteins
Profile

Unraveling cancer’s spaghetti proteins

Aug. 13, 2025

MOSAIC scholar Katie Dunleavy investigates how Aurora kinase A shields oncogene c-MYC from degradation, using cutting-edge techniques to uncover new strategies targeting “undruggable” molecules.

How HCMV hijacks host cells — and beyond
Profile

How HCMV hijacks host cells — and beyond

Aug. 12, 2025

Ileana Cristea, an ASBMB Breakthroughs webinar speaker, presented her research on how viruses reprogram cell structure and metabolism to enhance infection and how these mechanisms might link viral infections to cancer and other diseases.

Understanding the lipid link to gene expression in the nucleus
Profile

Understanding the lipid link to gene expression in the nucleus

Aug. 11, 2025

Ray Blind, an ASBMB Breakthroughs speaker, presented his research on how lipids and sugars in the cell nucleus are involved in signaling and gene expression and how these pathways could be targeted to identify therapeutics for diseases like cancer.

Receptor antagonist reduces age-related bone loss in mice
Journal News

Receptor antagonist reduces age-related bone loss in mice

Aug. 6, 2025

Receptor antagonist reduces bone loss and promotes osteoblast activity in aging mice, highlighting its potential to treat osteoporosis. Read more about this recent JBC paper.

Engineered fusion protein targets kiwifruit pathogen
Journal News

Engineered fusion protein targets kiwifruit pathogen

Aug. 6, 2025

Synthetic protein selectively kills kiwifruit pathogen, offering a promising biocontrol strategy for agriculture. Read more about this recent JBC paper.