麻豆传媒色情片

Annual Meeting

Airola seeks the secrets of lipid-modifying enzymes

Nipuna Weerasinghe
Jan. 18, 2023

Michael Airola was introduced to lipid research as a graduate student in ’s lab at Cornell University, studying bacterial receptors involving transmembrane signaling.

“This was when researchers who work with membrane proteins started using model lipid membranes like nanodiscs and paying attention to the effect of the lipid environment on membrane protein structure and function,” he said.

Michael Airola
Michael Airola

Airola’s horizons widened when, for his postdoc, he moved to ’s lab at Stony Brook University.

“Hannun is a pioneer in studying the enzymes involved in sphingolipid metabolism,” Airola said. “He was interested in atomic details of how these enzymes work. … I brought structural skills and learned a lot about lipid biochemistry and techniques related to handling lipids and working with lipid membranes. Also, I got exposed to cell biology, animal work and drug development.”

Lipids are cellular building blocks and essential to many cellular functions. They are closely associated with chronic disorders, including cardiovascular disease and diabetes, so learning about lipids is vital to improving human health. And that’s what Airola continues to do as an assistant professor of biochemistry and cell biology at Stony Brook.
“Our lab is broadly interested in lipid metabolism and transport,” he said. “We seek to understand the molecular details of these processes and develop new pharmacological and genetically encoded tools to monitor and control the generation of lipids in the cell.”

During the COVID-19 shutdown, Airola helped start the 麻豆传媒色情片 and 麻豆传媒色情片 Biology’s online Lipid Research Division Seminar Series, now attended each month by about 350 scientists. He is a junior associate editor of the Journal of Lipid Research, and he received the ASBMB’s 2022 Walter A. Shaw Young Investigator of Lipid Research Award.

Studying structure to understand function

Michael Airola’s lab focuses on lipid-modifying enzymes, such as lipins, that are relevant to cancer, cardiovascular disease and fungal infections.

“We use structural biology techniques such as X-ray crystallography and cryo-EM coupled with an array of biochemical and cellular approaches in our research work,” Airola said. “These works are complemented by computational methods such as docking and molecular dynamic simulations to gain a molecular level understanding of lipid metabolism and lipid signaling.”

The lab tries to determine how these enzymes’ structures allow them to recognize their unique hydrophobic substrates and interact with the membrane during catalysis and how these proteins are regulated through interactions with specific lipids or other protein effectors, he explained.

Airola’s lab determined the first structures of human phospholipase D, a therapeutic target for cancer, and a lipin phosphatidic acid phosphatase that regulates fat storage as triglycerides. They are now developing inhibitors for fungal-specific lipid-modifying enzymes.

“I believe this work can make an impact in the real world in my lifetime to fight against the life-threatening fungal pathogen especially prevalent in hospital environments in the U.S.,” he said.

During Discover BMB, the 2023 annual meeting of the ASBMB, in addition to speaking at the JLR Spotlight Session, Airola will discuss his work in the symposium on lipid dynamics and signals in membrane and protein structure.

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition monthly.

Learn more
Nipuna Weerasinghe

Nipuna Weerasinghe holds a bachelor’s degree in chemistry from the University of Colombo, Sri Lanka, and a master’s degree in chemistry from the University of Arizona.

Get the latest from ASBMB Today

Enter your email address, and we鈥檒l send you a weekly email with recent articles, interviews and more.

Latest in People

People highlights or most popular articles

Meet the 2025 SOC grant awardees
Outreach

Meet the 2025 SOC grant awardees

Aug. 15, 2025

Five science outreach and communication projects received up to $1,000 from ASBMB to promote the understanding of molecular life science.

Unraveling cancer鈥檚 spaghetti proteins
Profile

Unraveling cancer鈥檚 spaghetti proteins

Aug. 13, 2025

MOSAIC scholar Katie Dunleavy investigates how Aurora kinase A shields oncogene c-MYC from degradation, using cutting-edge techniques to uncover new strategies targeting 鈥渦ndruggable鈥 molecules.

How HCMV hijacks host cells 鈥 and beyond
Profile

How HCMV hijacks host cells 鈥 and beyond

Aug. 12, 2025

Ileana Cristea, an ASBMB Breakthroughs webinar speaker, presented her research on how viruses reprogram cell structure and metabolism to enhance infection and how these mechanisms might link viral infections to cancer and other diseases.

Understanding the lipid link to gene expression in the nucleus
Profile

Understanding the lipid link to gene expression in the nucleus

Aug. 11, 2025

Ray Blind, an ASBMB Breakthroughs speaker, presented his research on how lipids and sugars in the cell nucleus are involved in signaling and gene expression and how these pathways could be targeted to identify therapeutics for diseases like cancer.

In memoriam: William S. Sly
In Memoriam

In memoriam: William S. Sly

Aug. 11, 2025

He served on the 麻豆传媒色情片 and 麻豆传媒色情片 Biology Council in 2005 and 2006 and was an ASBMB member for 35 years.

ASBMB committees welcome new members
Society News

ASBMB committees welcome new members

Aug. 7, 2025

Members joined these committees: Education and Professional Development, Maximizing Access, Meetings, 麻豆传媒色情片, Public Affairs Advisory, Science Outreach and Communication, Student Chapters and Women in Biochemistry and 麻豆传媒色情片 Biology.