麻豆传媒色情片

Journal News

The metabolic trigger that activates sperm

John Arnst
Nov. 13, 2020

When viewed under a microscope, sperm cells typically look like eager swimmers with a singular purpose. But despite the haste that their flagella and behavior imply, sperm are hardly ready to go at a moment’s notice.

Leeuwenhoek-art-445x963.jpg
WELLCOME TRUST COLLECTION
Antoni Van Leeuwenhoek first observed the structure of sperm in 1677, which
he detailed here in his 1719 book "Opera omnia."

After ejaculation, they need up to an hour to undergo a process of posttranslational modifications called capacitation, which alters their heads so they can merge with an egg and changes the movement patterns of their tails to a frenzied state of hyperactivity before they are able to fertilize that egg. While in this state, sperm shut off their typical metabolic pathway, oxidative phosphorylation, and instead begin to rely on glycolysis for their final push. One of the biochemical changes that makes capacitation possible is the covalent addition of sialic acid to the terminal end of glycoproteins, or sialyation, a process that only affects a handful of proteins on sperm but is essential to fertilization.

To better understand the role that sialyation plays in fertilization, researchers at the University of Newcastle used a tandem mass spectrometry and liquid chromatograph approach to examine the glycoproteomic changes in sperm cells that had been made to undergo capacitation through incubation for 90 minutes. They detailed in the journal 麻豆传媒色情片 & Cellular Proteomics.

“We wanted to know, if we take sperm before and after capacitation, what would change in terms of the sialic acid proteins,” said , a Newcastle scientist who researches the proteomics of sperm and male fertility. “And the answer was extremely little, which was quite surprising. Very, very, very few proteins, 0.4% or something stupidly small.”

But the paltry six proteins that Baker and his colleagues found had decreased sialic acid content, which he attributed to either shedding or the activity of a glycosidase, turned out to be glycolic red herrings after they noted a lone protein that had increased sialyation.

That protein’s name? Aconitase, or ACO2, an enzyme in the citric acid cycle that catalyzes the isomerization of citrate to isocitrate. Thanks to a computer model built by Vincenzo Carbone, a co-author at the Grasslands Research Centre, the researchers then found that sialyation causes a conformational change in aconitase’s alpha helix that distorts its active site and completely shuts it down, along with oxidative phosphorylation as a whole.

“We think that would suggest that when you stop oxidative phosphorylation and shuttle the metabolic pathway through to glycolysis, that’s probably a trigger for the hyperactivation, or probably helps it in some way, but we don’t know,” Baker said.

However, hyperactivity itself is not well understood. According to Baker, researchers currently have multiple competing theories about its role and purpose in fertilization.

“The only thing that we know for sure is that without hyperactivation, you just don’t get fertility.”

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition monthly.

Learn more
John Arnst

John Arnst was a science writer for ASBMB Today.

Get the latest from ASBMB Today

Enter your email address, and we鈥檒l send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

How scientists identified a new neuromuscular disease
Feature

How scientists identified a new neuromuscular disease

Aug. 14, 2025

NIH researchers discover Morimoto鈥揜yu鈥揗alicdan syndrome, after finding shared symptoms and RFC4 gene variants in nine patients, offering hope for faster diagnosis and future treatments.

Unraveling cancer鈥檚 spaghetti proteins
Profile

Unraveling cancer鈥檚 spaghetti proteins

Aug. 13, 2025

MOSAIC scholar Katie Dunleavy investigates how Aurora kinase A shields oncogene c-MYC from degradation, using cutting-edge techniques to uncover new strategies targeting 鈥渦ndruggable鈥 molecules.

How HCMV hijacks host cells 鈥 and beyond
Profile

How HCMV hijacks host cells 鈥 and beyond

Aug. 12, 2025

Ileana Cristea, an ASBMB Breakthroughs webinar speaker, presented her research on how viruses reprogram cell structure and metabolism to enhance infection and how these mechanisms might link viral infections to cancer and other diseases.

Understanding the lipid link to gene expression in the nucleus
Profile

Understanding the lipid link to gene expression in the nucleus

Aug. 11, 2025

Ray Blind, an ASBMB Breakthroughs speaker, presented his research on how lipids and sugars in the cell nucleus are involved in signaling and gene expression and how these pathways could be targeted to identify therapeutics for diseases like cancer.

Receptor antagonist reduces age-related bone loss in mice
Journal News

Receptor antagonist reduces age-related bone loss in mice

Aug. 6, 2025

Receptor antagonist reduces bone loss and promotes osteoblast activity in aging mice, highlighting its potential to treat osteoporosis. Read more about this recent JBC paper.

Engineered fusion protein targets kiwifruit pathogen
Journal News

Engineered fusion protein targets kiwifruit pathogen

Aug. 6, 2025

Synthetic protein selectively kills kiwifruit pathogen, offering a promising biocontrol strategy for agriculture. Read more about this recent JBC paper.