
The specialized metabolism and trafficking of cellular subcompartments
Your first biology course probably defined eukaryotes in part as having a group of specialized organelles. These membrane-bound subcompartments of the eukaryotic cell are unique in many ways, especially their specialized biochemistry and metabolism.
The three sessions we have organized for Discover BMB will cover several topics focused on the novel biology and biochemistry of the mitochondria, peroxisome and chloroplast. These sessions will address current research on specific metabolic pathways, with important new insights into the protein structure and trafficking that support the integrity and function of these organelles.
Submit an abstract
Abstract submission begins Sept. 14. If you submit by Oct. 12, you'll get a decision by Nov. 1. The regular submission deadline is Nov. 30.
These multidisciplinary talks will provide information not only on the specific biochemical functions of these organelles, but also on their integrative architecture and physiology. In the three sessions, new information will be integrated into general principles of organelle biogenesis and metabolic function.
Keywords: Mitochondria, chloroplast, peroxisome, metabolism, covalent modifications, organelle biogenesis, protein structure and trafficking.
Who should attend: Anyone interested in metabolism, organellar proteomes and the specialized biology of organelles.
Theme song: by Gojira, because it is such a high-energy song — mitochondria, chloroplasts ...
This session is powered by ATP.
Mitochondria, peroxisomes and chloroplast metabolism

Protein covalent modifications and chloroplast metabolism
Chair: Greg Moorhead
Greg Moorhead, University of Calgary
Glen Uhrig, University of Alberta
R. Paul Jarvis, University of Oxford
Paula Mulo, University of Turku
Peroxisome biogenesis/metabolism
Chair: Tom Rapoport
Francesca Di Cara, Dalhousie University
Brooke Gardner, University of California, Santa Barbara
Tom Rapoport, Harvard Medical School; Howard Hughes Medical Institute
Irfan Lodhi, Washington University in St. Louis
Mitochondria energetics/metabolism
Chair: Erin Goley
Pere Puigserver, Dana–Farber Cancer Institute; Harvard Medical School
Lena Pernas, Max Planck Institute for Biology of Ageing
Alexey Amunts, Stockholm University
Rebecca Voorhees, California Institute of Technology
Enjoy reading ASBMB Today?
Become a member to receive the print edition four times a year and the digital edition monthly.
Learn moreGet the latest from ASBMB Today
Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.
Latest in Science
Science highlights or most popular articles

ApoA1 reduce atherosclerotic plaques via cell death pathway
Researchers show that ApoA1, a key HDL protein, helps reduce plaque and necrotic core formation in atherosclerosis by modulating Bim-driven macrophage death. The findings reveal new insights into how ApoA1 protects against heart disease.

Omega-3 lowers inflammation, blood pressure in obese adults
A randomized study shows omega-3 supplements reduce proinflammatory chemokines and lower blood pressure in obese adults, furthering the understanding of how to modulate cardiovascular disease risk.

AI unlocks the hidden grammar of gene regulation
Using fruit flies and artificial intelligence, Julia Zeitlinger’s lab is decoding genome patterns — revealing how transcription factors and nucleosomes control gene expression, pushing biology toward faster, more precise discoveries.

Zebrafish model links low omega-3s to eye abnormalities
Researchers at the University of Colorado Anschutz developed a zebrafish model to show that low maternal docosahexaenoic acid can disrupt embryo eye development and immune gene expression, offering a tool to study nutrition in neurodevelopment.

Top reviewers at ASBMB journals
Editors recognize the heavy-lifters and rising stars during Peer Review Week.

Teaching AI to listen
A computational medicine graduate student reflects on building natural language processing tools that extract meaning from messy clinical notes — transforming how we identify genetic risk while redefining what it means to listen in science.