Âé¶¹´«Ã½É«Ç鯬

News

How a complex molecule moves iron through the body

Tatyana Woodall
By Tatyana Woodall
Sept. 18, 2022

New research provides fresh insight into how an important class of molecules are created and moved in human cells.

For years, scientists knew that mitochondria — specialized structures inside cells in the body that are essential for respiration and energy production — were involved in the assembly and movement of iron-sulfur cofactors, some of the most essential compounds in the human body. But until now, researchers didn’t understand how exactly the process worked. 

New research, published in the journal found that these cofactors are moved with the help of a substance called glutathione, an antioxidant that helps prevent certain types of cell damage by transporting these essential iron cofactors across a membrane barrier. 

Mechanism of cluster transport by Atm1.
Mechanism of cluster transport by Atm1.

Glutathione is especially useful as it aids in regulating metals like iron, which is used by red blood cells to make hemoglobin, a protein needed to help carry oxygen throughout the body, said , co-author of the study and a distinguished university professor emeritus in

“Iron compounds are critical for the proper functioning of cellular biochemistry, and their assembly and transport is a complex process,” Cowan said. “We have determined how a specific class of iron cofactors is moved from one cellular compartment to another by use of complex molecular machinery, allowing them to be used in multiple steps of cellular chemistry.”

Iron-sulfur clusters are an important class of compounds that carry out a variety of metabolic processes, like helping to in the production of energy and making key metabolites in the cell, as well as assisting in the replication of our

“But when these clusters don't work properly, or when key proteins can’t get them, then bad things happen,” Cowan said.

If unable to function, the corrupted protein can give rise to several diseases, including rare forms of anemia, (a disorder that causes progressive nervous system damage), and a multitude of other metabolic and neurological disorders. 

So to study how this essential mechanism works, researchers began by taking a fungus called C. thermophilum, identifying the key protein molecule of interest, and producing large quantities of that protein for structural determination. The study notes that the protein they studied within C. thermophilum is essentially a cellular twin of the human protein ABCB7, which transfers iron-sulfur clusters in people, making it the perfect specimen to study iron-sulfur cluster export in people. 

By using a combination of cryo-electron microscopy and computational modeling, the team was then able to create a series of structural models detailing the pathway that mitochondria use to export the iron cofactors to different locations inside the body. While their findings are vital to learning more about the basic building blocks of cellular biochemistry, Cowan said he’s excited to see how their discovery could later advance medicine and therapeutics. 

“By understanding how these cofactors are assembled and moved in human cells, we can lay the groundwork for determining how to prevent or alleviate symptoms of certain diseases,” he said. “We can also use that fundamental knowledge as the foundation for other advances in understanding cellular chemistry.” 

This article was republished with permission from The Ohio State University.

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition monthly.

Learn more
Tatyana Woodall
Tatyana Woodall

Tatyana Woodall is a science writer for Ohio State University.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

ApoA1 reduce atherosclerotic plaques via cell death pathway
Journal News

ApoA1 reduce atherosclerotic plaques via cell death pathway

Oct. 1, 2025

Researchers show that ApoA1, a key HDL protein, helps reduce plaque and necrotic core formation in atherosclerosis by modulating Bim-driven macrophage death. The findings reveal new insights into how ApoA1 protects against heart disease.

Omega-3 lowers inflammation, blood pressure in obese adults
Journal News

Omega-3 lowers inflammation, blood pressure in obese adults

Oct. 1, 2025

A randomized study shows omega-3 supplements reduce proinflammatory chemokines and lower blood pressure in obese adults, furthering the understanding of how to modulate cardiovascular disease risk.

AI unlocks the hidden grammar of gene regulation
Feature

AI unlocks the hidden grammar of gene regulation

Sept. 30, 2025

Using fruit flies and artificial intelligence, Julia Zeitlinger’s lab is decoding genome patterns — revealing how transcription factors and nucleosomes control gene expression, pushing biology toward faster, more precise discoveries.

Zebrafish model links low omega-3s to eye abnormalities
Journal News

Zebrafish model links low omega-3s to eye abnormalities

Sept. 24, 2025

Researchers at the University of Colorado Anschutz developed a zebrafish model to show that low maternal docosahexaenoic acid can disrupt embryo eye development and immune gene expression, offering a tool to study nutrition in neurodevelopment.

Top reviewers at ASBMB journals
Observance

Top reviewers at ASBMB journals

Sept. 19, 2025

Editors recognize the heavy-lifters and rising stars during Peer Review Week.

Teaching AI to listen
Essay

Teaching AI to listen

Sept. 18, 2025

A computational medicine graduate student reflects on building natural language processing tools that extract meaning from messy clinical notes — transforming how we identify genetic risk while redefining what it means to listen in science.