
MCSs stick the landing
Membrane contact sites, or MCSs, represent the ultimate intracellular duct tape — binding organelles together within eukaryotic cells to promote growth. Enabled by tethering proteins, MCSs are a coordinating nexus that fosters intermembrane exchange and signaling.

As conduits for lipid and small metabolite transfer between organelle membranes, MCSs are key regulators of metabolism. As structural elements linking intracellular membranes, MCSs control membrane organization and protect against membrane stresses. As platforms for important signaling receptors, MCSs initiate cellular responses to regulatory or environmental cues.
The recognition of MCSs as key regulators of cell growth is underscored by new discoveries of MCS function in cellular disease and infection.
Keywords: Membrane contact sites, membrane stress, mitochondrial regulation, nonvesicular transport, lipid transport, membrane structure, lipid metabolism, lipid regulation.
Who should attend: Âé¶¹´«Ã½É«Ç鯬 cell biologists and membrane biochemists who marvel at how membrane dynamics regulates metabolic function and organelle organization.
Theme song: by Lionel Richie
This session is powered by the unsung heroes of membrane and lipid research.
Submit an abstract
Abstract submission begins Sept. 14. If you submit by Oct. 12, you'll get a decision by Nov. 1. The regular submission deadline is Nov. 30.
Membrane contact sites
Regulation of lipid transfer and metabolism at membrane contact sites
Hongyuan Yang, University of Texas Health Science Center at Houston

Jen Liou (chair), University of Texas Southwestern Medical Center
Alexandre Toulmay, University of Texas Southwestern Medical Center
Arash Bashirullah, University of Wisconsin–Madison
Membrane signaling at membrane contact sites
Thomas Simmen (chair), University of Alberta
Jay Tan, University of Pittsburgh
Alissa Weaver, Vanderbilt University
Chi-Lun Chang, St. Jude Children's Research Hospital
Specialized membrane contact site functions
Isabelle Derré, University of Virginia
Aaron Neiman, Stony Brook University
Christopher T. Beh (chair), Simon Fraser University
Enjoy reading ASBMB Today?
Become a member to receive the print edition four times a year and the digital edition monthly.
Learn moreGet the latest from ASBMB Today
Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.
Latest in Science
Science highlights or most popular articles

ApoA1 reduce atherosclerotic plaques via cell death pathway
Researchers show that ApoA1, a key HDL protein, helps reduce plaque and necrotic core formation in atherosclerosis by modulating Bim-driven macrophage death. The findings reveal new insights into how ApoA1 protects against heart disease.

Omega-3 lowers inflammation, blood pressure in obese adults
A randomized study shows omega-3 supplements reduce proinflammatory chemokines and lower blood pressure in obese adults, furthering the understanding of how to modulate cardiovascular disease risk.

AI unlocks the hidden grammar of gene regulation
Using fruit flies and artificial intelligence, Julia Zeitlinger’s lab is decoding genome patterns — revealing how transcription factors and nucleosomes control gene expression, pushing biology toward faster, more precise discoveries.

Zebrafish model links low omega-3s to eye abnormalities
Researchers at the University of Colorado Anschutz developed a zebrafish model to show that low maternal docosahexaenoic acid can disrupt embryo eye development and immune gene expression, offering a tool to study nutrition in neurodevelopment.

Top reviewers at ASBMB journals
Editors recognize the heavy-lifters and rising stars during Peer Review Week.

Teaching AI to listen
A computational medicine graduate student reflects on building natural language processing tools that extract meaning from messy clinical notes — transforming how we identify genetic risk while redefining what it means to listen in science.