Âé¶¹´«Ã½É«Ç鯬

Journal News

The pitfalls of relying on computers

Chloe Kirk
May 2, 2023

Glycosylation is a frequent post-translational modification, and the resulting glycoproteins — proteins decorated with carbohydrates — are involved in many functions that influence proteins’ physical and immunological properties. This means researchers need software that correctly characterizes glycosylation and identifies the types of glycoproteins involved.

Two important types of glycoproteins are O-linked and N-linked, so called because sugars are attached to the protein through an oxygen atom (O) or nitrogen atom (N) of the residues they bind to. Researchers have limited knowledge about protein glycosylation, especially O-glycosylation. According to Zsuzsanna Darula, head of the Single Cell Omics Advanced Core Facility at the Hungarian Center of Excellence for Âé¶¹´«Ã½É«Ç鯬 Medicine, or HCEMM, that’s due to a number of factors: “their impressive heterogeneity, the inability to predict which residues may be modified, the identified modification sites are not always occupied, and several, rather different glycans may modify the same residue.”

Mass spectrometry, a valuable tool for discovering protein modifications, works by measuring the mass of an intact molecule and then fragmenting the molecule and measuring its pieces to decipher its chemical structure. Using the latest mass spectrometers with improved mass accuracy and detection sensitivity, Adam Pap and collaborators at the Biological Research Centre and HCEMM analyzed the largest intact human O-glycopeptide data set to date from human urine samples.

In the lab’s initial analysis, Pap noticed that the urinary O-glycosylation landscape was more complicated than expected. The team ran the data through four automated interpretation search engines and also characterized it manually. They noticed large discrepancies among the search engine data interpretations, which in the journal Âé¶¹´«Ã½É«Ç鯬 & Cellular Proteomics.

The team originally had hoped to identify O-glycosylation differences between healthy individuals and cancer patients and, thus, potential biomarkers of bladder cancer. Instead, “We discovered in the process that our tools are not good enough yet for that purpose,” Darula and Pap wrote in an email, “and we focused on the shortcomings and necessary improvements of data interpretation software.”

More than half of the O-glycopeptides were picked up by only one of the four search engines, and some N-glycopeptides even qualified as O-glycosylation candidates, according to certain software. Only about 20% of the identifications were supported by three or four of the programs.

Glycopeptides are tricky to characterize. A researcher must determine both the sequence of the peptide and the number and composition of the individual modifying glycans, as well as their attachment sites. The authors recommend applying two fragmentation methods during the analysis: higher-energy collision-induced dissociation, or HCD, and electron-transfer dissociation and HCD in combination. The resulting spectra must be used in concert for the data interpretation.

According to Darula and Pap, the team’s secret weapon was inspecting the data themselves, and in doing so they reported about 35 novel structures.

“Our study should be a warning for both the scientific community and the general public that we all want an easy and quick answer to most of our questions and for this reason, we throw our critical thinking aside and trust the computers too much,” they wrote.

Darula and her team urge closer collaboration between software developers and mass spectrometry groups to improve the code accuracy in glycopeptide assignments.

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition monthly.

Learn more
Chloe Kirk

Chloe Kirk is working toward her Ph.D. in biochemistry and molecular biology at the University of Miami. Her interests are science research, communication and outreach.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

ApoA1 reduce atherosclerotic plaques via cell death pathway
Journal News

ApoA1 reduce atherosclerotic plaques via cell death pathway

Oct. 1, 2025

Researchers show that ApoA1, a key HDL protein, helps reduce plaque and necrotic core formation in atherosclerosis by modulating Bim-driven macrophage death. The findings reveal new insights into how ApoA1 protects against heart disease.

Omega-3 lowers inflammation, blood pressure in obese adults
Journal News

Omega-3 lowers inflammation, blood pressure in obese adults

Oct. 1, 2025

A randomized study shows omega-3 supplements reduce proinflammatory chemokines and lower blood pressure in obese adults, furthering the understanding of how to modulate cardiovascular disease risk.

AI unlocks the hidden grammar of gene regulation
Feature

AI unlocks the hidden grammar of gene regulation

Sept. 30, 2025

Using fruit flies and artificial intelligence, Julia Zeitlinger’s lab is decoding genome patterns — revealing how transcription factors and nucleosomes control gene expression, pushing biology toward faster, more precise discoveries.

Zebrafish model links low omega-3s to eye abnormalities
Journal News

Zebrafish model links low omega-3s to eye abnormalities

Sept. 24, 2025

Researchers at the University of Colorado Anschutz developed a zebrafish model to show that low maternal docosahexaenoic acid can disrupt embryo eye development and immune gene expression, offering a tool to study nutrition in neurodevelopment.

Top reviewers at ASBMB journals
Observance

Top reviewers at ASBMB journals

Sept. 19, 2025

Editors recognize the heavy-lifters and rising stars during Peer Review Week.

Teaching AI to listen
Essay

Teaching AI to listen

Sept. 18, 2025

A computational medicine graduate student reflects on building natural language processing tools that extract meaning from messy clinical notes — transforming how we identify genetic risk while redefining what it means to listen in science.