Âé¶ą´«Ă˝É«ÇéƬ

Journal News

Pan-kinase inhibitor for head and neck cancer enters clinical trials

Andrea Lius
March 18, 2025

Protein kinases, enzymes that catalyze reversible phosphorylation, are important players in cell signaling and are often dysregulated in cancer. For this reason, kinase inhibitors are popular cancer drugs that work by locking kinases in their active or inactive form, depending on function.

Kinase inhibitors that act on the active conformation, also known as adenosine triphosphate, or ATP,–competitive inhibitors, occupy the ATP binding pocket of the kinase domain, where the catalytic reaction takes place, and lock kinases in an active form. Because kinase domains across various proteins are well conserved, scientists can relatively easily develop ATP–competitive inhibitors that bind a variety of kinase targets.

3d illustration of throat cancer.
 

However, these inhibitors can be less effective than their counterparts that bind to other parts of the kinase and lock them in the inactive conformation. Binding to the ATP pocket only inhibits their enzymatic activity, but not their other functions like scaffolding, which may promote tumorigenesis. 

In a recent published in the Journal of Biological Chemistry, an international group of scientists reported a new kinase inhibitor, NXP900, that targets the inactive form of , or SFKs. The team showed that head and neck as well as esophageal squamous cell carcinomas are highly sensitive to NXP900 treatment both in cell culture and animals. The drug is currently in clinical trials.  

“It was surprising to me how responsive a lot of these cell lines were to NXP900,” , senior investigator at the National Institutes of Health’s National Cancer Institute and the study’s corresponding author, said.

Brognard said his group became interested in head and neck as well as esophageal squamous cell carcinomas because these cancers have a shared genetic component: sequence amplification of an SFK called Yes. Existing SFK Src kinase inhibitors like are ineffective and approved immunotherapies like have very low success rates in these types of cancer. So, patients are stuck with radiotherapy or chemotherapy, which can produce many unpleasant side effects.

Patients with these conditions are desperate for effective treatments, he said.

“One of the biggest discoveries of this paper was how we identified a patient cohort that could really benefit from NXP900,” Brognard said.

, a postdoctoral fellow at NCI and lead author of the paper, and Brognard said that NXP900 targets multiple members of the SFK, including Yes, Src and Lck. According to Brognard, this approach, commonly referred to as “polypharmacology,” goes a step further beyond simple kinase inhibitors.  

Kinases that are closely related can compensate for each other and drive drug resistance, Brognard said. For example, if we target Yes alone, we will likely observe resistance arising through compensation by other SFKs like Src or Lck, he said.

“Resistance will probably eventually still occur,” said Brognard. “But we can postpone it by targeting multiple cancer drivers simultaneously.”

Dash said that future research will home in on the molecular mechanisms of NXP900.

“We saw that some of the squamous cell carcinoma lines that we tested were sensitive to NXP900 while others were resistant,” she said. “We want to know why.”

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition monthly.

Learn more
Andrea Lius

Andrea Lius is a Ph.D. candidate in the Ong quantitative biology lab at the University of Washington. She is an ASBMB Today volunteer contributor.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

How scientists identified a new neuromuscular disease
Feature

How scientists identified a new neuromuscular disease

Aug. 14, 2025

NIH researchers discover Morimoto–Ryu–Malicdan syndrome, after finding shared symptoms and RFC4 gene variants in nine patients, offering hope for faster diagnosis and future treatments.

Unraveling cancer’s spaghetti proteins
Profile

Unraveling cancer’s spaghetti proteins

Aug. 13, 2025

MOSAIC scholar Katie Dunleavy investigates how Aurora kinase A shields oncogene c-MYC from degradation, using cutting-edge techniques to uncover new strategies targeting “undruggable” molecules.

How HCMV hijacks host cells — and beyond
Profile

How HCMV hijacks host cells — and beyond

Aug. 12, 2025

Ileana Cristea, an ASBMB Breakthroughs webinar speaker, presented her research on how viruses reprogram cell structure and metabolism to enhance infection and how these mechanisms might link viral infections to cancer and other diseases.

Understanding the lipid link to gene expression in the nucleus
Profile

Understanding the lipid link to gene expression in the nucleus

Aug. 11, 2025

Ray Blind, an ASBMB Breakthroughs speaker, presented his research on how lipids and sugars in the cell nucleus are involved in signaling and gene expression and how these pathways could be targeted to identify therapeutics for diseases like cancer.

Receptor antagonist reduces age-related bone loss in mice
Journal News

Receptor antagonist reduces age-related bone loss in mice

Aug. 6, 2025

Receptor antagonist reduces bone loss and promotes osteoblast activity in aging mice, highlighting its potential to treat osteoporosis. Read more about this recent JBC paper.

Engineered fusion protein targets kiwifruit pathogen
Journal News

Engineered fusion protein targets kiwifruit pathogen

Aug. 6, 2025

Synthetic protein selectively kills kiwifruit pathogen, offering a promising biocontrol strategy for agriculture. Read more about this recent JBC paper.