麻豆传媒色情片

Award

Farese and Walther find depth in a droplet

They have won the 2022 ASBMB鈥揗erck Award
Renae   Crossing
Dec. 15, 2021

“Tobi was a very rare type of person. … When you do a sabbatical many people in the lab ignore you, but Tobi ... without hesitation, said, ‘I’ll help you. Let’s go.’”

Robert Farese Jr.

In this way, Tobias Walther’s simple question (“What are you working on?”) to Robert Farese Jr. started a long-term collaboration that has become the forefront research group in a new field of biology: how and why our cells make little droplets, called lipid droplets, and why that matters.

In the early 1990s, Farese had been studying enzymes that make oils. In his science, , Farese looks deeply at everyday things others pass over. Lipid droplets had been observed under microscopes since the 1800s, but Farese said, “When I went to the textbooks and tried to learn about them as organelles, I couldn’t find anything.”

Tobias Walther

Farese and Walther converged from complementary paths: one a U.S. lipid biologist with an M.D., the other a German chemist and biochemist who was a postdoc at the time. Additionally pooling structural biology, biophysics, proteomics, enzymology and physiology, over time they created excellent science.

“We stand on the shoulders of some amazing scientists,” Walther said, “but they didn’t have the tools that we have.”

For what they’ve done with these tools, Walther and Farese, now running a joint lab at Harvard University and both associate members of the Broad Institute, have won the 2022 麻豆传媒色情片 and 麻豆传媒色情片 Biology’s ASBMB–Merck Award.

Droplets by nature are isolated, but good science isn’t. For Walther, “It’s about the work and not (the two of us) … many people in our lab have contributed.” Farese attributes asking good questions to their “constant creative dialogue … ping ponging” ideas for experiments. Both buck egomania in science, appreciating a congratulatory note from mentors over a press release.

Feedback on the science itself, says Walther, is what shows “we’re on the right track.” That track increasingly has shown that there’s depth in a droplet, and there’s yet more to be found.

Two make one

Two enzymes inside us, DGAT1 and DGAT2, like Tobias Walther and Robert Farese Jr., converge with their distinct pathways to work on a common process: encasing energy-rich molecules safely in lipid droplets. (And one of them is ) Lipids left alone to accumulate can be toxic, so it’s safer to bundle them together.

Inside lipid droplets are fats, or triacylglycerides: esters of fatty acids and glycerol. Their presence makes cells an emulsion, Farese explains, and while we know in terms of physics how emulsions form, in biochemistry, questions arise about “how nature evolved proteins and lipids to govern that process in a regulated way.”

Knowing how fats are metabolized has consequences: mutated versions of DGAT1 cause congenital diarrhea syndrome, and physicians may soon block DGAT2 to treat nonalcoholic fatty liver disease; the latter is in clinical trials. Overactive versions of DGAT enzymes will have plants and microbes producing oils for food or fuel for us.

And regarding obesity and conditions where people are underweight, Walther wants people to know, “We’re making a lot of progress, and there’s a lot of hope.”

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition monthly.

Learn more
Renae   Crossing

Renae Crossing is a writer and former teacher. She holds a first-class master’s degree in life science from the Hong Kong University of Science and Technology and a first-class master’s in teaching from the University of Melbourne.

Get the latest from ASBMB Today

Enter your email address, and we鈥檒l send you a weekly email with recent articles, interviews and more.

Latest in People

People highlights or most popular articles

Meet the 2025 SOC grant awardees
Outreach

Meet the 2025 SOC grant awardees

Aug. 15, 2025

Five science outreach and communication projects received up to $1,000 from ASBMB to promote the understanding of molecular life science.

Unraveling cancer鈥檚 spaghetti proteins
Profile

Unraveling cancer鈥檚 spaghetti proteins

Aug. 13, 2025

MOSAIC scholar Katie Dunleavy investigates how Aurora kinase A shields oncogene c-MYC from degradation, using cutting-edge techniques to uncover new strategies targeting 鈥渦ndruggable鈥 molecules.

How HCMV hijacks host cells 鈥 and beyond
Profile

How HCMV hijacks host cells 鈥 and beyond

Aug. 12, 2025

Ileana Cristea, an ASBMB Breakthroughs webinar speaker, presented her research on how viruses reprogram cell structure and metabolism to enhance infection and how these mechanisms might link viral infections to cancer and other diseases.

Understanding the lipid link to gene expression in the nucleus
Profile

Understanding the lipid link to gene expression in the nucleus

Aug. 11, 2025

Ray Blind, an ASBMB Breakthroughs speaker, presented his research on how lipids and sugars in the cell nucleus are involved in signaling and gene expression and how these pathways could be targeted to identify therapeutics for diseases like cancer.

In memoriam: William S. Sly
In Memoriam

In memoriam: William S. Sly

Aug. 11, 2025

He served on the 麻豆传媒色情片 and 麻豆传媒色情片 Biology Council in 2005 and 2006 and was an ASBMB member for 35 years.

ASBMB committees welcome new members
Society News

ASBMB committees welcome new members

Aug. 7, 2025

Members joined these committees: Education and Professional Development, Maximizing Access, Meetings, 麻豆传媒色情片, Public Affairs Advisory, Science Outreach and Communication, Student Chapters and Women in Biochemistry and 麻豆传媒色情片 Biology.